NUEVOS RIESGOS DE LAS NUEVAS PROPIEDADES DE LOS NANO-MATERIALES




Dicho de forma simple: el tamaño de una pequeña partícula se equipara a las propiedades de la nueva partícula, las que también pueden presentar nuevos riesgos. Las nano-partículas tienen un área de superficie muy grande, lo que resulta en mayor reactividad química, actividad biológica y comportamiento catalítico comparado con partículas más grandes de la misma composición química (Garnett and Kallinteri 2006; Limbach et al. 2007; Nel et al. 2006).
Los nanomateriales también tienen lejos mayor acceso a nuestro cuerpo (conocido como biodisponibilidad) que partículas más grandes, resultando en mayor captación dentro de células individuales, tejidos y órganos. Materiales que tengan una medida menor a 300nm pueden ser tomados por células individuales (Garnett and Kallinteri 2006), mientras que nano-materiales cuya medida es menor a 70nm pueden incluso ser captados por el núcleo de nuestras células, donde pueden causar mayor daño (Chen and Mikecz 2005; Geiser et al. 2005; Li et al. 2003).
Desafortunadamente, la mayor reactividad química y biodisponibilidad de nano-materiales también podrían resultar en mayor toxicidad de nano-partículas, comparado con la misma unidad de masa de partículas más grandes de la misma composición química (Hoet et al. 2004; Oberdörster et al. 2005a; Oberdörster et al. 2005b).
Otras propiedades de nano-materiales que influyen en la toxicidad, incluyen: Composición química; forma; estructura de superficie; carga de superficie; comportamiento catalítico; extensión de la congregación de partículas (clumping) o disgregación, y presencia o ausencia de otros grupos de químicos adjuntos al nano-material. (Brunner et al. 2006; Magrez et al. 2006; Sayes et al. 2004; Sayes et al. 2006).
Algunos nano-materiales han probado ser tóxicos para el tejido humano y cultivos de células in vitro, resultando en un incremento del estrés oxidativo, producción de proteinas gatillando una respuesta inflamatoria (Oberdörster et al. 2005b), mutación del ADN (Geiser et al. 2005), daño estructural para el núcleo de la célula e interferencia con la actividad y crecimiento de la célula (Chen and von Mikecz 2005), daño estructural a la mitocondria e incluso muerte celular (Li et al. 2003).
Nano-materiales usados ahora por la industria de alimentos tales como nano-dióxido de titanio, plata, zinc y óxido de zinc, se han demostrado tóxicos para las células y tejidos en experimentos in vitro, y en estudios de pruebas con animales vivos.
La forma, carga y tamaño de las diferentes partículas pueden influír en su cinética (absorción, distribución, metabolismo y excreción) y propiedades tóxicas. es por esta razón que incluso nano-materiales de la misma composición química que tienen diferentes tamaños o formas, pueden tener ampliamente diferente toxicidad.

REFERENCIAS


Ashwood P, Thompson R, y Powell J. 2007. Fine particles that adsorb lipopolysaccharide via bridging calcium cations maymimic bacterial pathogenicity towards cells. Exp Biol Med 232(1):107-117.
Badgley C, Moghtader J, Quintero E, Zakem E, Chappell M, Aviles-Vazquez K, Salon A, Perfecto I. 2007. Organic agriculture and the global food supply. Renew Ag Food Systems 22 (2):86-108.
Ballestri M, Baraldi A, Gatti A, Furci L, Bagni A, Loria P, Rapana R, Carulli N, Albertazzi A. 2001. Liver and kidney foreign bodies granulomatosis in a patient with malocclusion, bruxism, and worn dental prostheses. Gastroenterol 121(5):1234–8.
Beane Freeman L., Bonner M, Blair A., Hoppin J, Sandler D, Lubin J, Dosemeci M, Lynch C, Knott C, Alavanja M. 2005.
Cancer Incidence among Male Pesticide Applicators in the Agricultural Health Study Cohort Exposed to Diazinon. Am J Epidemiol 162(11): 1070-1079.
Bizzari K. 2007. The EU’s biotechnology strategy: mid-term review or mid-life crisis? A scoping study on how European agricultural biotechnology will fail the Lisbon objectives and on the socio-economic benefits of ecologically compatible farming.
Holder H and Oxborrow C (Eds). Friends of the Earth Europe, Brussels. Available athttp://www.foeeurope.org/publications/2007/FoEE_biotech_MTR_midlifecrisis_March07.pdf
Bowman D, Hodge G. 2006. Nanotechnology: Mapping the wild regulatory frontier. Futures 38:1060-1073.
Bowman D, Hodge G. 2007. A Small Matter of Regulation: An International Review of Nanotechnology Regulation. Columbia Sci Technol Law Rev Volume 8:1-32.
Boxhall A, Tiede K, Chaudhry Q. 2007. Engineered nanomaterials in soils and water: how do they behave and could they pose a risk to human health? Nanomedicine 2(6):919-927.
Braydich-Stolle L, Hussain S, Schlager J, Hofmann M. 2005. In Vitro Cytotoxicity of Nanoparticles in Mammalian Germline Stem Cells. Toxicol Sci 88(2):412–419.
Brunner T, Piusmanser P, Spohn P, Grass R, Limbach L, Bruinink A, Stark W. 2006. In Vitro Cytotoxicity of Oxide Nanoparticles: Comparison to Asbestos, Silica, and the Effect of Particle Solubility. Environ Sci Technol 40:4374-4381.
Chen Z, Meng H, Xing G, Chen C, Zhao Y, Jia G, Wang T, Yuan H, Ye C, Zhao F, Chai Z, Zhu C, Fang X, Ma B, Wan L. 2006.
Acute toxicological effects of copper nanoparticles in vivo. Toxicol Lett 163:109-120.
Chen M, von Mikecz A. 2005. Formation of nucleoplasmic protein aggregates impairs nuclear function in response to SiO2
nanoparticles. Experiment Cell Res 305:51-62.
Cientifica. 2006. Homepage. Available at:
Daniells, S. 2007. Thing big, think nano. Food Navigator.com Europe 19 December 2007. Available at:http://www.foodnavigator.com/news/ng.asp?n=82109 (accessed 21 December 2007).
Donaldson K, Beswick P, Gilmour P. 1996. Free radical activity associated with the surface of particles: a unifying factor in determining biological activity? Toxicol Lett 88:293-298.
Dunford R, Salinaro A, Cai L, Serpone N, Horikoshi S, Hidaka H, Knowland J. 1997. Chemical oxidation and DNA damage catalysed by inorganic sunscreen ingredients. FEBS Lett 418:87-90
Ervin D, Welsh R. 2003. Environmental effects of genetically modified crops: differentiated risk assessment and management.
Chapter 2a in J. Wesseler (Ed) “Environmental costs and benefits of transgenic crops in Europe: Implications for research, production, and consumption. Kluwer Academic Publishers, Dordrecht, The Netherlands ETC Group. 2004. Down on the Farm. Available at: http://www.etcgroup.org/ (accessed 17 January 2008).
ETC Group. 2005. Oligopoly, Inc. 2005. Concentration in Corporate Power. Available at:http://www.etcgroup.org/ (accessed 17 January 2008).
ETC Group. 2007. Extreme genetic engineering: An introduction to synthetic biology Available at:
FAO 2007. International conference on organic agriculture and food security 3-5 May 2007. FAO Italy. Available at:
Federici G, Shaw B, Handy R. 2007. Toxicity of titanium dioxide nanoparticles to rainbow trout (Oncorhynchus mykiss): Gill injury, oxidative stress, and other physiological effects. Aquatic Toxicol 84(4):415-430.
Foladori G, Invernizzi N. 2007. Agriculture and food workers question nanotechnologies. The IUF resolution. Available at:
Garnett M, Kallinteri P. 2006. Nanomedicines and nanotoxicology: some physiological principles. Occup Med 56:307-311.
Gatti A. 2004. Biocompatibility of micro- and nano-particles in the colon. Part II. Biomaterials 25:385-392.
Gatti A, Rivasi F. 2002. Biocompatibility of micro- and nanoparticles. Part I: in liver and kidney. Biomaterials 23:2381–2387
Gatti A, Tossini D, Gambarelli A. 2004. Investigation Of Trace Elements In Bread Through Environmental Scanning Electrón Microscope And Energy Dispersive System. 2nd International IUPAC Symposium, Brussels, October 2004.
Geiser M, Rothen-Rutlshauser B, Knapp N, Schurch S, Kreyling W, Schulz H, Semmler M, Im H, Heyder J, Gehr P. 2005.
Ultrafine particles cross cellular membranes by non-phagocytic mechanisms in lungs and in cultured cells. Environ Health Perspect 113(11):1555-1560.
Helmut Kaiser Consultancy Group. 2007a. Nanopackaging Is Intelligent, Smart And Safe Life. New World Study By Hkc22.com Beijing Office. Press Release 14.05.07 Available at http://www.prlog.org/10016688nanopackaging-isintelligent-smart-and-safe-life-newworld-study-by-hkc22-com-beijing-office.pdf (accessed 17 January 2008).
Helmut Kaiser Consultancy Group. 2007b. Strong increase in nanofood and molecular food markets in 2007 worldwide.
Hisano S, Altoé S. 2002. Brazilian farmers at a crossroad: Biotech industrialization of agriculture or new alternatives for family farmers? Paper presented at CEISAL July 3 to 6, 2002, Amsterdam. Available at:http://www.agroeco.org/brasil/material/hisano.pdf (accessed 17 January 2008).
Hund-Rinke K, Simon M. 2006. Ecotoxic effect of photocatalytic active nanoparticles (TiO2) on algae and daphnids. Environ Sci Poll Res 13(4):225-232.
Hussain S, Hess K, Gearhart J, Geiss K, Schlager J. 2005. In vitro toxicity of nanoparticles in BRL 3A rat liver cells. Toxicol In Vitro 19:975-983.
Hussain S, Javorina A, Schrand A, Duhart H, Ali S, Schlager J. 2006. The interaction of manganese nanoparticles with PC-12 cells induces dopamine depletion. Toxicol Sci 92(2):456-46.
IFST 2006. Information Statement: Nanotechnology. Institute of Food Science & Technology Trust Fund, London. Available at: http://www.ifst.org/uploadedfiles/cms/store/ATTACHMENTS/Nanotechnology.pdf(accessed 15 January 2008).
Innovest. 2006. Nanotechnology: Non-traditional Methods for Valuation of Nanotechnology Producers. Innovest, Strategic Value Advisers.
Joseph T, Morrison M. 2006. Nanotechnology in Agriculture and Food. Nanoforum Report. Available at:
Lagarón J, Cabedo L, Cava D, Feijoo J, Gavara R, Gimenez E. 2005. Improved packaging food quality and safety. Part 2: Nano-composites. Food Additives and Contaminants 22(10):994-998.
Li N, Sioutas C, Cho A, Schmitz D, Misra C, Sempf J, Wang M, Oberley T, Froines J, Nel A. 2003. Ultrafine particulate pollutants induce oxidative stress andmitochondrial damage. Environ Health Perspect 111(4):455-460.
Lomer M, Harvey R, Evans S, Thompson R, Powell P. 2001. Efficacy and tolerability of a low microparticle diet in a double blind, randomized, pilot study in Crohn’s disease. Eur J Gastroenterol Hepatol 13:101-106.
Long T, Saleh N, Tilton R, Lowry G, Veronesi B. 2006. Titanium dioxide (P25) produces reactive oxygen species in immortalized brain microglia (BV2): Implications for nanoparticle neurotoxicity. Environ Sci Technol 40(14):4346-4352.
Lovern B, Klaper R. 2006. Daphnia magna mortality when exposed to titanium dioxide and fullerene (c60) nanoparticles. Environ Toxicol Chem 25(4):1132-1137.
Lucarelli M, Gatti A, Savarino G, Quattroni P, Martinelli L, Monari E, Boraschi D 2004. Innate defence functions of macrophages can be biased by nano-sized ceramic and metallic particles. Eur Cytok Net 15(4):339-346.
Magrez A, Kasa S, Salicio V, Pasquier N, Won Seo J, Celio M, Catsicas S, Schwaller B, Forro L. 2006. Cellular toxicity of carbon-based nanomaterials. Nano Lett 6(6):1121-1125.
Maynard A, Kuempel E. 2005. Airborne nanostructured particles and occupational health. J Nanopart Res 7:587–614.
Melhus A. 2007. Silver threatens the use of antibiotics. Unpublished manuscript, received by email 30 January 2007.
Nyéléni 2007- Forum for Food Sovereignty. 2007. Peoples’ Food Sovereignty Statement. Available at:http://www.nyeleni2007.org/IMG/pdf/Peoples_Food_Sovereignty_Statement.pdf (accessed 29 September 2007).
Oberdörster G, Oberdörster E, Oberdörster J. 2005. Nanotoxicology: an emerging discipline from studies of ultrafine particles. Environ Health Perspect 113(7):823-839.
Opara L. 2004. Emerging technological innovation triad for agriculture in the 21st century. Part 1. Prospects and impacts of nanotechnology in agriculture. Ag Engineering Internat: CIGR J Ag Engineering Internat Vol 6.
Petrelli G, Figà-Talamanca I, Tropeano R, Tangucci M, Cini C, Aquilani S, Gasperini L., Meli P. 2000. Reproductive male-mediated risk: Spontaneous abortion among wives of pesticide applicators. Eur J Epidemiol 16: 391-393.
Pimental D, Hepperly P, Hanson J, Douds D, Seidel R. 2005. Environmental, energetic and economic comparisons of organic and conventional farming systems. Bioscience 55(7):573-582.
Renton A. 2006. Welcome to the world of nanofoods. Guardian Unlimited UK 13 December 2006. Available at: http://observer.guardian.co.uk/foodmonthly/futureoffood/story/0,,1971266,00.html (accessed 17 January 2008).
Reynolds G. 2007. FDA recommends nanotechnology research, but not labelling. FoodProductionDaily.com News 26 July 2007.
Roco M. 2001. From vision to implementation of the US National Nanotechnology Initiative. J Nanoparticle Research 3:5-11.
Roco M, Bainbridge W (Eds). 2002. Converging Technologies for Improving Human Performance: nanotechnology, biotechnology, information technology and cognitive science. NSF/DOC-sponsored report. Available at: http://www.wtec.org/ConvergingTechnologies/ (accessed 24 January 2008).
Sayes C, Wahi R, Kurian P, Liu Y, West J, Ausman K, Warheit D, Colvin V. 2006. Correlating nanoscale titania structure with toxicity: A cytotoxicity and inflammatory response study with human dermal fibroblasts and human lung epithelial cells. Toxicol Sci 92(1):174–185.
SCENIHR. 2006. The appropriateness of existing methodologies to assess the potential risks associated with engineered and adventitious products of nanotechnologies. European Commission, Brussels.
Schneider J. 2007. Can microparticles contribute to inflammatory bowel disease: Innocuous or inflammatory? Exp Biol Med 232:1-2.
Scrinis G y Lyons K. 2007. The emerging nano-corporate paradigm: Nanotechnology and the transformation of nature, food and agri-food systems. Internat J Sociol Agric and Food. 15(2). Available at:http://www.csafe.org.nz/ (accessed 2 March 2008)
Shelke K . 2006. Tiny, invisible ingredients. Food Processing.com. Available at:http://www.foodprocessing.com/articles/2006/227.html (accessed 8 August 2007).
Sorrentino A, Gorrasi G, Vittoria V. 2007. Potential perspectives of bio-nanocomposites for food packaging applications. Trends Food Sci Technol 18:84-95.
Throback I, Johansson M, Rosenquist M, Pell M, Hansson M, Hallin S. 2007. Silver (Ag(+)) reduces denitrification and induces enrichment of novel nirK genotypes in soil. FEMS Microbiol Lett 270(2):189–194.
Tran C, Donaldson K, Stones V, Fernandez T, Ford A, Christofi N, Ayres J, Steiner M, Hurley J, Aitken R, Seaton A. 2005. A scoping study to identify hazard data needs for addressing the risks presented by nanoparticles and nanotubes. Research Report. Instit Occup Med, Edinburgh.
Tucker J, Zilinskas R. 2006. The promise and the peril of synthetic biology. New Atlantis 12:25-45.
U.K. HSE. 2004. Nanoparticles: An occupational hygiene review. Available at http://www.hse.gov.uk/research/rrpdf/rr274.pdf
van Balen E, Font R, Cavallé N, Font L, Garcia-Villanueva M, Benavente Y, Brennan P, de Sanjose S. 2006. Exposure to non-arsenic pesticides is associated with lymphoma among farmers in Spain. Occupation Environ Med 63:663-668.
Wang B, Feng W-Y, Wang T-C, Jia G, Wang M, Shi J-W, Zhang F, Zhao Y-L, Chai Z-F. 2006. Acute toxicity of nano- and micro-scale zinc powder in healthy adult mice. Toxicol Lett 161:115–123.
Wang B, Feng W, Wang M, Wang T, Gu Y, Zhu M, Ouyang H, Shi J, Zhang F, Zhao Y, Chai Z, Wang H, Wang J. 2007a. Acute toxicological impact of nano- and submicro-scaled zinc oxide powder on healthy adult mice. J Nanopart Res 10(2):263-276
Wang J, Zhou G, Chen C, Yu H, Wang T, Ma Y, Jia G, Gai Y, Li B, Sun J, Li Y, Jiao F, Zhano Y, Chai Z. 2007b. Acute toxicity and biodistribution of different sized titanium dioxide particles in mice after oral administration. Toxicol Lett 168(2):176-185.
Wolfe J. 2005. Safer and guilt-free nanofoods. Forbes.com US 10 August 2005. Available at:http://www.forbes.com/investmentnewsletters/2005/08/09/nanotechnology-krafthershey-cz_jw_0810soapbox_inl.html
Zhang Y, Zhang Y, Chen J, Zhang H, Zhang Y, Kong L, Pan Y, Liu J, Wang J. 2006. A novel gene delivery system: Chitosan-carbon nanoparticles. Nanoscience 11(1):1-8.

No hay comentarios:

Publicar un comentario