Nanotubos de carbono


Nanotubos
En química, se denominan nanotubos a estructuras tubulares cuyo diámetro es del orden del nanómetro (nm). Un nanómetro equivale en escala a la billonésima parte de un metro (1 nm = 1x10-9 m). Existen nanotubos de muchos materiales, tales como silicio o nitruro de boro, pero generalmente el término se aplica a los nanotubos de carbono o CNTs (Carbon Nanotubes).

Los nanotubos de carbono son una forma alotrópica del carbono, como el diamante, el grafito o los fullerenos. Su estructura puede considerarse procedente de una lámina de grafito enrollada sobre sí misma. Dependiendo del grado de enrollamiento y la manera como se conforma la lámina original, el resultado puede llevar a nanotubos de distinto diámetro y geometría interna. Los nanotubos conformados como si las esquinas de un folio se uniesen por sus extremos formando un canuto, se denominan nanotubos monocapa, o SWNTs (Single-Walled Nanotubes) Existen también nanotubos cuya estructura se asemeja a la de una serie de tubos concéntricos, incluidos unos dentro de otros a modo de "muñecas matriuska" y lógicamente de grosores crecientes desde el centro a la periferia. Estos últimos son los nanotubos multicapa o MWNTs (Multi-walled Nanotubes). Se conocen derivados en los que el tubo está cerrado por media esfera de fullereno, y otros que no están cerrados.
Los nanotubos están  siendo estudiados activamente, como los fullerenos por su interés fundamental para la química y por sus aplicaciones tecnológicas. Es, por ejemplo, la primera sustancia conocida por la humanidad capaz de sustentar indefinidamente su propio peso, una condición necesaria para la construcción de un ascensor espacial.

Otras equivalencias del nanómetro

  • Milímetro: 1 mm = 1 000 000 nm
  • Micrómetro: 1 µm = 1000 nm
  • Angstrom: 1 Å = 1/10 nm
  • Picómetro: 1 pm = 1/1000 nm

Descubrimiento

1889. El primer antecedente descrito sobre la producción de filamentos carbonosos a partir de vapor se debe a Hugues y Chambers, que patentaron en EE.UU un procedimiento para la fabricación de filamentos de carbono utilizando como gases precursores hidrógeno y metano en un crisol de hierro.
En 1952 y L. V. Radushkevich y V. M. Lukyanovich, publicaron imágenes claras de 50 tubos de carbono de diámetro nanométrico en el diario oficial de química física en la Unión Soviética. Este descubrimiento fue en gran medida inadvertido, ya que el artículo fue publicado en idioma ruso, los científicos occidentales y el acceso a la prensa soviética, fue hecho casi imposible durante la guerra fría. Es probable que los nanotubos de carbono se produjeran antes de esta fecha, pero fue la invención del microscopio  de transmisión de electrones o TEM(Transmission electron microscopy), quien permitió la visualización directa de estas estructuras.
1953. Con el desarrollo del microscopio electrónico, Davis, Slawson y Rugby describen la producción unos filamentos entre 100 y 200 nm, de forma helicoidal, a partir de la desproporción de CO catalizada por hierro a 450ºC, permaneciendo éste en la punta de los filamentos. A la vez que los filamentos, se producían también carbono amorfo y carburos de hierro.
1958. Hillert y Lange realizan una exhaustiva caracterización estructural de estos filamentos, corroborando la presencia de una partícula metálica en la punta. Los diámetros de estos filamentos oscilaban entre 10 y 100 nm y  poseían una estructura altamente grafítica.
1970s. En esta década comienza a estudiarse de forma exhaustiva la generación de filamentos de carbono por procesos catalíticos, a partir de distintos precursores (hidrocarburos o CO) y usando como catalizadores diversos metales (Fe, Co, Ni, etc.). Caben destacar dos grupos principales de trabajo:
El grupo de RTK Baker, del Departamento de Energía Atómica Británico, que siempre trabajó a escala de laboratorio. Principalmente utilizaron mezclas de acetileno e hidrógeno y catalizadores de diferentes metales (Ni, Co, Fe, Cr). Inicialmente trabajaron con nanopartículas de Ni soportadas, las cuales debían estar en estado elemental para ser activas, y propusieron un modelo de crecimiento, en el que el hidrocarburo difundía a través de la partícula metálica debido a un gradiente de temperatura, condensando carbono en la parte posterior. Este grupo definió estos materiales como filamentos de carbono (para diferenciarlos de las fibras).
Los nanotubos de carbono se han producido y observado bajo una variedad de condiciones desde antes de 1991. Un documento de Oberlin, Endo, y Koyama publicado en 1976, muestra claramente las fibras huecas de carbono a escala nanométrica, utilizando una técnica de crecimiento por vapor oCVD (Chemical Vapor Deposition). Además, los autores mostraron una imagen TEM de un compuesto de nanotubos de una sola pared de grafito. Posteriormente, Endo se refirio a esta imagen como un nanotubo de pared simple o monocapa (SWNT). Además, en 1979, John Abrahamson presentó pruebas de nanotubos de carbono en la 14 conferencia bienal de carbono en la universidad estatal de Pennsylvania. El documento de la conferencia, describe los nanotubos de carbono como las fibras de carbono que se producen de ánodos del mismo compuesto, durante una descarga por arco. Se planteó la caracterización de estas fibras, tanto como la hipótesis para su crecimiento en una atmósfera de nitrógeno a baja presión. 

En 1981 un grupo de científicos soviéticos publicó los resultados de la estructura química y caracterización de las nanopartículas de carbono, producido por una desproporción termo-catalítica de monóxido de carbono. Usando imágenes TEM y patrones de XRD, los autores sugirieron que sus "cristales tubulares de carbono multicapa”, fueron formados mediante el enrollamiento de capas de grafito en forma de cilindros. Además, ellos especularon que durante el proceso de enrollamiento de capas de carbono en un cilindro, son posibles muchos arreglos diferentes de grafito en forma de redes hexagonales. Se platearon dos posibilidades de estas distribuciones: En forma circular (nanotubo sillón) y en forma espiral, helicoidal (tubo quiral). 

En 1987, le fue entregada una patente de los EE.UU. a Howard G. Tennent de Hyperion Catálisis, por la producción de “fibrillas discretas cilíndricas de carbono", con un diámetro de entre 3.5 y alrededor de 70 nanómetros…, longitud 10² el diámetro, un orden exterior de la región de múltiples capas esencialmente continuas de átomos de carbono ordenados, y un distinto núcleo interno... 
En el año 2006 un artículo escrito por Marc Monthioux y Vladimir Kuznetsov en el “Carbon Journal”, describe el interesante y a menudo erróneo origen de los nanotubos de carbono. Un elevado porcentaje de universitarios y de literatura popular, atribuye el descubrimiento de tubos huecos de carbono compuestos de grafito a Sumio Iijima de NEC en 1991. 
El descubrimiento de Iijima de los nanotubos de carbono en el material insoluble de varillas de grafito quemadas por método de arco, creó la "revolucion investigativa" que está ahora asociada con nanotubos de carbono. Los estudios de nanotubos de carbono, se aceleraron enormemente después de los descubrimientos independientes hechos por Bethune de IBM y Iijima de NEC; en nanotubos de carbono de pared simple y métodos específicamente para la producción de estos, mediante la adición de catálisis por transición metálica al carbono en una descarga por arco. La técnica de descarga por arco era bien conocida, por producir el afamado Buckminster fullereno a escala preparativa. Esos resultados parecieron ampliar la carrera de descubrimientos accidentales de fullerenos.

Métodos de producción

Método del sustrato
La síntesis de nanotubos de carbono por esta técnica es esencialmente un proceso de dos etapas, en una primera etapa se preparan los catalizadores y en una segunda etapa se crecen los nanotubos. Los catalizadores son preparados generalmente dispersando nanopartículas de un metal de transición sobre un substrato. Dado que el elemento activo es el metal en estado elemental, es necesario un tratamiento de reducción con hidrógeno para inducir la nucleación de partículas catalíticas en el sustrato. En la siguiente etapa (el catalizador ha de estar ya en todo momento en atmósfera controlada libre de aire), se introduce en el sistema la fuente de carbono para producir el crecimiento de los nanotubos. Las temperaturas utilizadas para la síntesis de nanotubos por CVD se hallan generalmente comprendidas entre 650 y 900ºC. Suele emplearse un reactor tubular, introducido en un horno eléctrico, para llevar a cabo ambas etapas, pasando de una a otra mediante los flujos de gases y las temperaturas. Durante la etapa de crecimiento de nanotubos, suele seguir utilizándose hidrógeno como gas portador ya que este inhibe la formación de carbono amorfo.
Cuando se desea producir VGCF engordadas, suele realizarse una tercera etapa de engrosamiento, donde se disminuye la relación de hidrógeno y se incrementa la temperatura para favorecer el craqueo.
El método del sustrato es versátil y permite obtener los distintos tipos de filamentos con alta selectividad. Sin embargo, las cantidades a producir son muy pequeñas, al ser un proceso discontinuo que requiere de unos tiempos de residencia elevadísimos, por lo que los costes son astronómicos.
Método del Catalizador Flotante.

Este método fue desarrollado en la década de 1980 por los grupos de Endo y Tibbetts para la producción de VGCF. Hoy en día, es una forma válida de la obtención de nanotubos, nanofibras o VGCF, aunque el control de lo que ocurre es bastante más complicado que en el método del sustrato. La idea de este método es producir de forma continua, en un único proceso continuo, los nanofilamentos catalíticos, introduciendo en el reactor sus reactivos. Por lo tanto, todas las etapas descritas en el método del sustrato (preparación del catalizador, generación de nanopartículas de metal elemental, crecimiento de nanofilamentos (y engrosamiento) debe tener lugar en un único reactor.
Como fuente de catalizador suele utilizarse Fe principalmente, y en concreto órgano metálicos de Fe para que la generación de las nanopartículas metálicas activas sea más factible. Se utilizan tanto Fe (CO)5 como ferroceno. No se han encontrado en la bibliografía ningún trabajo en el que se obtengan nanofilamentos en catalizador flotante alimentando sales el reactor.
Para que los volúmenes del reactor no sean muy grandes y su diseño sea factible, la reacción debe tener una cinética razonable, muy superior a la del método del sustrato. Para ello hay que incrementar mucho la temperatura, con la inevitable formación de hollín por craqueo de la fuente de carbono. Para minimizar la formación de hollín, el tiempo de residencia ha de ser muy pequeño, del orden de segundos. Este gran incremento de la cinética se consigue añadiendo una fuente de S (H2S, tiofeno), en cantidades aproximadamente equimolares con el metal. La función del S no está clara, aunque parece que tiene que ver con la generación de partícula fundida.
Ablación Láser 
La "ablación láser" es un proceso que consiste en vaporizar un blanco de grafito mediante la radiación de un pulso láser, en un reactor de alta temperatura y en presencia de un gas inerte. Los nanotubos se forman cuando el grafito vaporizado entra en contacto con la superficie fría, condensando sobre las paredes del reactor.
Este procedimiento suele presentar un rendimiento típico del 70% en peso y produce nanotubos monocapa, con un diámetro que puede controlarse variando la temperatura en el interior del reactor.

Descarga de arco 
Desde 1991, la presencia de nanotubos se ha podido observar en el hollín producido al provocar un arco eléctrico entre dos electrodos de grafito. La corriente típica para producir dicho arco era de unos 100 amperes,  y paradójicamente lo que se pretendía era producir fullerenos. La primera vez que se produjeron nanotubos de carbono, de forma masiva, fue usando un método similar al anterior, por dos investigadores del Laboratorio de Investigación Básica de la compañía NEC.
En dicho proceso se observó que el carbono contenido en el electrodo negativo sublimaba debido a las altísimas temperaturas producidas por la descarga que provocaban el arco voltaico. Esta técnica es el método más importante usado en la síntesis de nanotubos, puesto que fue la primera en la que la producción de esta forma alotrópica era apreciable.
La descarga de arco es un tipo de descarga eléctrica continua que genera luz y calor muy intensos. Se produce entre dos electrodos enfrentados dentro de una atmósfera de gas inerte a baja presión. Por los electrodos de grafito, se hace pasar una corriente intensa, (cientos de amperes) la cual hace sublimar los átomos de carbono de la superficie de los electrodos, formando un plasma alrededor de estos. En un arco abierto al aire y a presión normal, (una atmósfera) el electrodo positivo alcanza una temperatura de unos 3.000 ºC.
El rendimiento típico usando esta técnica, es del orden del 30% en peso y los productos obtenidos son tanto nanotubos monocapa, como multicapa de una longitud típica de unas 50 micras.
Se puede combinar con el método de purificación por oxidación, desarrollado por Ebbesen en 1994, que consiste en el calentamiento de la fullerita extraída después de la descarga a 1000 K, en una atmósfera de oxígeno durante 30 minutos. Este procedimiento permite evaporar las diferentes clases de fullerenos y dejar los nanotubos aislados. También se emplea para evaporar las paredes más externas de los nanotubos de tipo multicapa, y también para abrir los extremos de los mismos.
CVD 
La deposición catalítica en fase de vapor, o Catalytic Vapor Phase, (a partir de ahora, CVD) fue descrita por primera vez en 1959, pero no fue hasta 1993 cuando los nanotubos se pudieron sintetizar mediante este proceso. En 2007, un grupo de investigadores de la Universidad de Cincinnati, desarrollaron un proceso de crecimiento que permitía obtener matrices de nanotubos de carbono alineados, de una longitud media de unos 18 mm.
En la CDV, normalmente se prepara un sustrato con una capa de metal, como el níquel, cobalto, oro o una combinación de estos. Las nanopartículas de metal se pueden producir también, por otros medios incluidos la reducción de óxidos o soluciones de óxidos sólidos. Los diámetros de los nanotubos que van a formarse por crecimiento controlado, están relacionados con el tamaño de las partículas de metal. Este tamaño se puede controlar por deposición de patrones (o mascaras de metal), o por la adición de agua fuerte sobre la capa de metal. El sustrato se calienta aproximadamente a unos 700 ºC.
Para iniciar el crecimiento de nanotubos, se mezclan dos gases en el reactor. Un gas de proceso tal como amoniaco, nitrógeno, hidrógeno y  otro gas que se usa como fuente de carbono; así como acetileno, etileno, etanol, metano, etc. Los nanotubos crecen en el lado del catalizador de metal. El gas que contiene carbono se rompe sobre la superficie de las partículas catalíticas, y el carbono es transportado a los límites de la partícula, donde se forman los nanotubos. Este mecanismo está todavía en fase de estudio y discusión. Las partículas catalíticas pueden permanecer sobre las puntas de crecimiento de los nanotubos durante el proceso de crecimiento, o continuar sobre la base del nanotubo, dependiendo de la adhesión entre las partículas catalíticas y el sustrato.
CDV es un método muy frecuente para la producción comercial de nanotubos de carbono. Para este propósito las nanopartículas de metal, se mezclarán cuidadosamente con un soporte catalizador por e.g. ( MgO, Al2O3, etc.); para incrementar el área de superficie específica, en aras de una mayor producción de la reacción catalítica defeedstock con las partículas de metal. Otra cuestión de la ruta de síntesis es la eliminación del soporte catalítico mediante un tratamiento ácido, lo que algunas veces podría llevar a la destrucción de la estructura original de los nanotubos. Algunos soportes catalíticos alternativos que son solubles en agua, han demostrado ser más efectivos para el crecimiento de nanotubos.
Si se genera un plasma, aplicando un intenso campo eléctrico durante el proceso de crecimiento (deposición del vapor químico aumentada por plasma); entonces el crecimiento del nanotubo seguirá la dirección del campo eléctrico.
Ajustando adecuadamente la geometría del reactor, es posible sintetizar nanotubos verticalmente alineados, e.g., perpendiculares al sustrato, una morfología que ha sido del interés de los investigadores interesados en la emisión de electrones por parte de nanotubos.
De manera usual, sin la presencia del plasma, los tubos resultantes están orientados aleatoriamente. El resultado es parecido a un "bowl de spaghetti" de carbono. Bajo ciertas condiciones de reacción, incluso en ausencia de campos eléctricos o plasmas, los nanotubos crecerán espaciados estrechamente y mantendrán una dirección de crecimiento vertical. El resultado es una densa matriz de tubos reensamblados a modo de alfombra o bosque.
De los métodos desarrollados para la síntesis de nanotubos, la técnica CVD se muestra la más prometedora para la escala industrial en términos de relación precio/unidad. Hay ventajas adicionales para la síntesis de nanotubos por CVD. De los diferentes métodos de obtención de nanotubos, CVD es la única técnica capaz de lograr un crecimiento directamente sobre un sustrato determinado. Sin embargo, en las demás técnicas, los nanotubos deben ser recopilados posteriormente. Los lugares de crecimiento son controlables por deposición cuidadosa de un catalizador. Además no hay otros métodos de crecimiento, por ahora, que se hayan desarrollado para producir nanotubos alineados verticalmente.
En el año 2007, un grupo de la Universidad de Meijo, desarrolló una técnica CVD para el crecimiento de nanotubos de carbono a partir del alcanfor. Otro grupo de investigadores de la Universidad de Rice, se ha concentrado en diseñar métodos para la producción de cantidades apreciables de nanotubos de gran longitud y pureza de una conformación particular. La forma de acometer el problema, se basa en hacer crecer fibras largas a partir de las semillas que provienen de un único nanotubo cortado. En los análisis de las muestras se comprobó que todas las fibras obtenidas resultaron ser del mismo diámetro y tipo del nanotubo original. Más adelante se espera una mejora en la producción y longitud de los nanotubos, para que puedan usarse en aplicaciones industriales. El crecimiento CVD de nanotubos multicapa, lo usan actualmente algunas compañías para producir toneladas de materiales, entre las que se encuentran: Arkema, Bayer, Hyperion Catalysis, Mitsui, Nanocyl, NanoLab, Nanothinx, y Showa Denko.

Tipos de nanotubos de carbono y estructuras relacionadas  

Nanotubos Monocapa 

La mayoría de nanotubos de una sola pared (SWNT) tienen un diámetro de cerca de 1 nanómetro, con una longitud del tubo que pueden ser muchos miles de veces más. La estructura de un SWNT, puede ser conceptual izado por un envoltorio de un átomo de espesor de la capa de grafito llamado graphene sin fisuras en un cilindro. La forma en que la hoja de graphene envuelve, está representado por un par de índices (n, m), llamado el vector quiral. Los números enteros m y n indican el número de vectores unitarios a lo largo de dos direcciones, en el panal de cristal enrejado de graphene. Si m = 0, los nanotubos se llaman "zigzag". Si n = m, los nanotubos son llamados "sillón". En caso contrario, se les llama "quirales".
Los nanotubos de pared simple son una muy importante variedad de nanotubos de carbono, ya que presentan importantes propiedades eléctricas que no se muestran en las diversas variaciones de tubos multicapa de carbono o (MWNT). Los nanotubos de pared simple son los más probables candidatos para miniaturización de electrónicos más allá de la escala micro-electromecánica; la base actual de la electrónica moderna. El bloque de construcción más básico de estos sistemas es el cable eléctrico, y los SWNTs pueden ser excelentes conductores. Una útil aplicación de SWNTs es en el desarrollo de los primeros transistores intramoleculares de efecto de campo (FETS). La producción de la primera puerta lógica utilizando SWNT FETS, ha pasado recientemente a ser posible también. Para crear una puerta lógica se debe tener ambos, un p-FET y un n-FET; porque los SWNTs son p-FETS cuando se exponen al oxígeno y n-FETS cuando no expuestos al oxígeno, es posible proteger la mitad de SWNTs a una exposición de oxígeno, mientras se expone la otra mitad al oxígeno. Esto resulta en un único SWNT que actúa como una puerta NO lógica con ambos p y n-tipo de FETS dentro de la misma molécula. 

Nanotubos de pared simple o monocapa son todavía muy caros de producir, alrededor de $ 1.500 por gramo al año 2000, y el desarrollo de técnicas más asequibles de síntesis es vital para el futuro de la nanotecnología de tubos de carbono. Si los medios más baratos de síntesis no pueden ser descubiertos, sería financieramente imposible aplicar esta tecnología a escala comercial. Varios proveedores ofrecen SWNTs producidos por descarga por arco por entre $ 50-100 por gramo al año 2007.


Fullerenos
Los fullerenos son macromoléculas de carbono individuales, con estructuras cerradas formadas por varias decenas de átomos de carbono únicamente. Los fullerenos son una forma alotrópica del carbono. Fueron descubiertos accidentalmente por los grupos de Smalley y de Kroto en 1985, siendo galardonado su descubrimiento con el premio Nobel de química en 1996. En un sistema  de dos electrodos de grafito a una distancia de 1 mm y a una presión de 200 torr, encontraron un depósito carbonoso en el ánodo al hacer saltar arcos eléctricos. Además del hollín o carbono evaporado de un electrodo al otro, estos investigadores encontraron resultados extraños en los espectros de masas de las muestras de carbono evaporado. Tras ser aislados por disolventes y tras numerosos estudios, se obtuvo que la mayoría de este material fueran moléculas de C60, con una estructura similar a la de un balón de fútbol, recibiendo el nombre de Fullerenos en honor a Buckmister Fuller, un arquitecto alemán que diseñaba cúpulas con este tipo de estructuras. También se encontraron cantidades menores de C70.
Los fullerenos pueden presentarse en forma de esfera hueca, elipsoidal, de tubo o plana. Los fullerenos esféricos son comúnmente conocidos como buckyballs. Aquellos en forma cilíndrica son denominados nanotubos de carbono o buckytubes. El graphene es un ejemplo de una hoja plana de fullereno. Los fullerenos son similares en estructura al grafito, el cual se compone de hojas apiladas de anillos hexagonales vinculados entre si, pero también pueden contener anillos pentagonales o en algunas ocasiones heptagonales.

Distintas variaciones de fullerenos
Desde el descubrimiento de los fullerenos en 1985, las variaciones estructurales de los fullerenos han evolucionado mucho más allá de los distintos grupos de ellos mismos (CXX). Ejemplos de fullerenos incluye:
  • Buckyball fullerenos: El miembro más pequeño es el C20. Otros ejemplos incluyen C26, C36, C50, C70, C72, C76, C80, C82, C84 y C60; este ultimo siendo el más común del grupo y también conocido como Buckminsterfullerene C60. XX número arraigado a la letra C constituye el número de atomos de carbono presente.
  • nanotubos
  • megatubos
  • polimeros
  • nano"cebollas"
  • vinculados "bola y cadena" dímeros
  • Anillos fullerenos
  • Graphene

La siguiente figura muestra la estructura atomica de un fullereno C36. Dicha imagen pertenece al Laboratorio Berkeley.


Molécula C36 “Stickyball”

Los físicos Charles Piskoti y Alex Zettl, junto con el químico Jeff Yarger de la Universidad de California, Berkeley; reportaron en la edición Naturaleza de junio 25,1998 que pudieron aislar una esfera de fullereno con sólo 36 átomos de carbono. Este descubrimiento fue examinado por Robert F. Service en la publicación CIENCIA del 26 de junio de 1998 (VOL . 280), el cual escribió un artículo titulado "Nuevos fullerenos redondos de la Familia"
Curt Suplee del diario Washington Post del lunes 29 de junio de 1998 (Pág. A03), escribió sobre "36 átomos adhesivos que podrían dar un futuro muy brillante al carbono". El reporte de R.F.Service observa que pruebas desarrolladas al nuevo fullereno demostraron que es mucho más reactivo químicamente que su primo grande C60, lo que podría hacerlo transformarse en todo, desde superconductores de alta temperatura hasta materiales de alta resistencia.
C36 es inestable para empezar, de ahí su apodo de "stickyball". Debido a su capacidad para enlazarse con otros átomos la molécula C36 podría producir nuevas sustancias estables por medio de su inusual estructura, resultando en útiles propiedades ópticas y electrónicas. Entre las propiedades alcanzables puede ser la superconductividad. Zettl opino que en contraste con la molécula C60 la C36 en teoría sugiere que la molécula más pequeña ", debe ser aún mejor en un superconductor de temperatura." Zettl también especuló que C-36 podría "ser interesante por razones médicas." Por ejemplo, podría ser capaz de extraer toxinas del torrente sanguíneo. Buckyballs son buenos en robo de compuestos llamados "radicales libres" que impiden la capacidad de auto-regeneración en células. Pero el problema es, Zettl señaló, "usted no puede extraerlas del cuerpo" una vez que se ha empapado el buckyball de cosas desagradables. Sin embargo el tamaño más pequeño de C-36 "podría ser una ventaja real."

Resumen publicado por el laboratorio Berkeley en relación a la molécula C36
Investigadores del laboratorio Berkeley, Alex Zettl, Steven Louie, Marvin Cohen y colegas, han sintetizado y aislado fullerenos C36 para el diseño de nuevos materiales. C36 es químicamente más reactivo que C60 debido a su mayor porcentaje de miembros de 5 anillos, por lo que forma una gran variedad de compuestos estables. Por ejemplo, los fullerenos C36 pueden ser recubiertos con otros elementos, tales como F o Cl, para desarrollar buckyballs con propiedades similares al teflón.
Los investigadores también han producido un fullereno sólido C36; la primera vez que ha sido sintetizado un fullereno más pequeño al C60. Las moléculas en estado sólido que pueden formarse en diferentes estructuras, se unen por enlace covalente formando un sólido polimerizado. Estos sólidos, (fulleritas de puro carbono C36), se espera posean altas temperaturas de transición de superconductividad. Además cuando algunos de los átomos de carbono se sustituyen por otros elementos como el nitrógeno, fusiones selectas se acortaran y la temperaturas de transición de superconductividad  se espera que aumentará aún más.
Las numerosas posibilidades para los materiales diseñados a partir de fullerenos C36 incluyen: Moléculas C36 halogenadas para lubricantes; materiales C36 para captura de marcadores radioactivos en imágenes médicas; películas de moléculas C36 con enlace covalente para catalizar reacciones químicas; átomos magnéticos atrapados dentro de fullerenos C36 en enlace covalente, para dispositivos de grabación. Materiales basados en C36 pueden ser usados también para los detectores de infrarrojos, otros medios ópticos y aplicaciones electrónicas.

Aplicaciones tecnológicas
-Lubricantes
-Superconductores
-Imágenes Medicas
-Catálisis química
-Dispositivos de Grabación

Ventajas de la molécula C36
  • Mayor reactividad química que la molécula C60. Esto significa más compuestos útiles.
  • Altas temperaturas de transición de superconductividad

Equipo investigativo de Nanotubosdecarbono.com

No hay comentarios:

Publicar un comentario